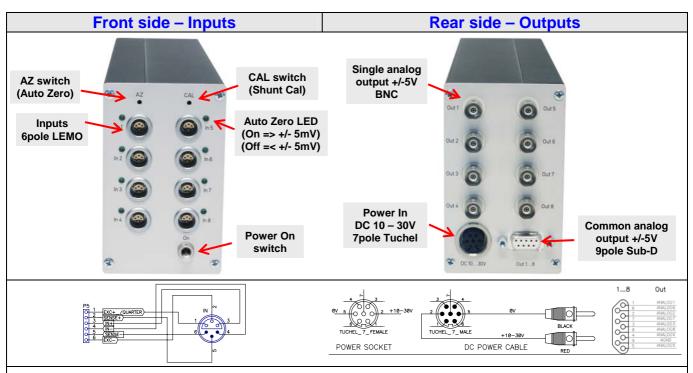
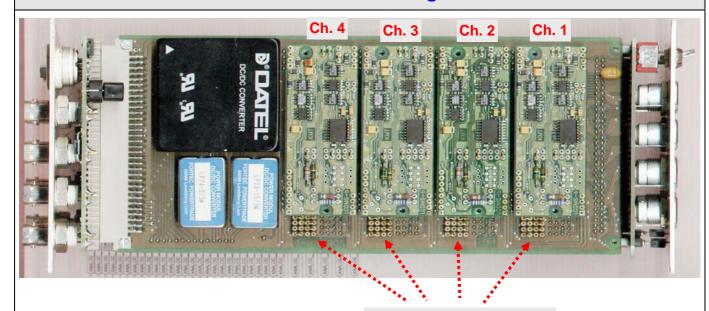
Kraus Messtechnik GmbH

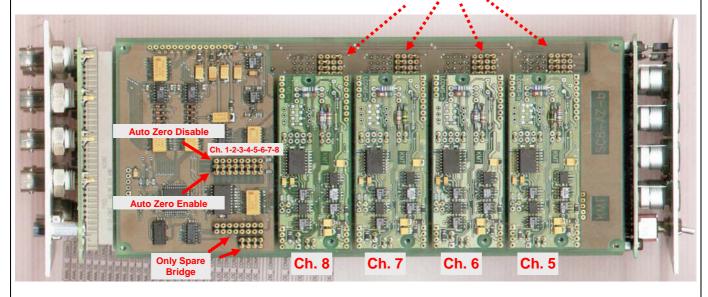
Gewerbering 9, D-83624 Otterfing, **2** 08024-48737, Fax. 08024-5532 − Germany Web: www.kmt-gmbh.com E-mail: info@kmt-gmbh.com



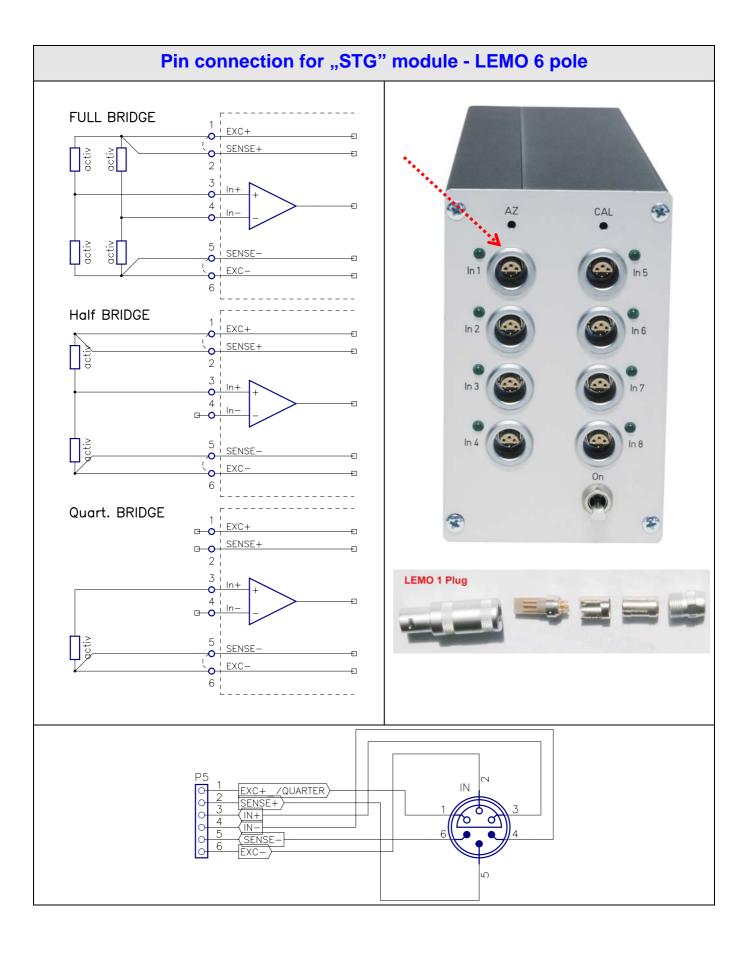
User manual SC-8

8-channel measuring amplifier


with signal conditioning modules for: STG, LVDT, ISO, THERMO, F/V, ICP, FILTER ...


Dimensions: 65 x 105 x 250 mm, Weight 1.5kg, Powering: 10-30V DC, Operating temperature range: - 20°C ... + 80°C

To measure: Module Description		Description	Characteristics	
Force, pressure, strain, torsion, material stress	STG	Strain gauges	 Full, half, quarter bridges in 2- and 3-wire technique (120Ω, 350Ω, 1kΩ) Settable gain (2, 10, 100, 1000) Settable bridge supply (4V, 8V) Auto-zeroing Additive 5kHz fixed filter (2pol. Butterworth) 	
Distance	LVDT	Inductive distance sensor	 Settable gain (1, 2, 5, 10) Sensor supply 5kHz, ±5V Auto-zeroing 	
Frequency, speed by pulse frequency	F/V	Frequency-to-voltage converter	 Settable maximum frequency (500Hz, 2.5kHz, 10kHz) Minimum frequency 40Hz Signal amplitude 0.3-10V Square, sine and triangle wave forms 10Hz output filter (2pol. Butterworth) 	
Acceleration,	ACC	Acceleration sensor based on STG	all common sensors	
oscillation, vibrations, acoustic	CAP	Capacitance accelerometer	 Measuring ranges ±3g, ±10g, ±50g Shock resistance 10.000g Frequency ranges 0-160Hz (±3g), 0-350Hz(±10g), 0-550Hz (±50g) 	
	ICP	Piezoelectric accelerometer and microphones	 Excitation current 1mA, 2mA, 4mA, 20mA (optional others) Excitation voltage 30V Gains 0.5, 1, 2, 4, 8, 16, 32 (optional others) Signal bandwidth 5-16000Hz 	
Temperature	THERMO	Thermo wires Type J, K (T)	Measuring range from -20°C up to +500°C Gain 10mV/°C Internal cold junction compensation Optional galvanic isolation with integrated ISO module	
	Pt100	Thermo resistors from Pt100 / Pt1000	 Measuring range from -20°C up to +500°C Gain 7.7mV/°C Excitations 0.25, 0.5, 0.75, 1mA for Pt100 Optional galvanic isolation with integrated ISO module 	
Galvanic isolated voltage	ISO	Isolation amplifier	Additive isolated sensor excitation Input ±10V Optional 4Hz fixed filter (4pol. Butterworth)	
Voltage	Voltage VOLT No signal conditioning		 Input ±2.5V, ±5V (default), ±10V, ±15V, ±20V, ±25V Auto-zeroing up to ±250mV Input resistance >100kΩ (depends on range) Optional bridge excitation ±15V 	
	FILTER	Optional filter for all modules	8 th order elliptical or linear phase frequency response, more than 2000 cut off frequencies from 10Hz to 7,5kHz available (reciprocal scaling)	


Main board settings

See STG board settings

Without opt. filter module

Signal conditioning for STG (strain gages)

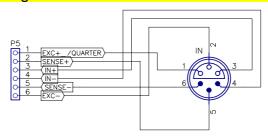
 $\begin{array}{ll} \text{Input voltage range:} & \pm \, 5\text{V}, \, Z_{\text{in}} = 10\text{M}\Omega \\ \text{Output voltage range:} & \pm \, 5\text{V}, \, I_{\text{max}} = 5\text{mA} \end{array}$

Linearity error: $\pm 0.1\%$

Gain: 10 - 100 - 1000 (programmable by jumper)

Excitation voltage: 4V, 8V (programmable by jumper)

Auto Zero: is stored at power off


STG Bridges: Full, half and quarter from 120Ω to $1k\Omega$

Quarter bridge completion can be altered by

plugged resistors

Pin connection for "ICP" module

Main board setting for ICP – Module like Full – Bridge (1/1Bridge)

Pin 3 = + IN - Pin 4 = - IN

Signal conditioning for ICP® and compatible sensors

Gain: 0.5, 1, 2, 4, 8, 16, 32 (programmable by jumper)
Current 1mA, 2mA, 4mA, 20mA (programmable by jumper)

Excitation voltage: 30V max

Output voltage range: \pm 5V, $I_{max} = 5mA$

Linearity error: $\pm 1\%$

Signal band width: 5 –16000Hz

Gain settings	Excitation settings
φφφ ΦΦΦ	φ φ Φ Φ Ο Ο
$ \begin{bmatrix} \varphi & \varphi & \Diamond \\ \Phi & \varphi & \varphi \\ \Diamond & \Diamond & \varphi \end{bmatrix} $ 1 $ \begin{bmatrix} \varphi & \varphi & \Diamond \\ \varphi & \varphi & \varphi \\ \Phi & \Diamond & \Phi \end{bmatrix} $ 16	Φ ○ Φ Φ 2mA
$ \begin{bmatrix} \varphi & \Diamond & \varphi \\ \Phi & \Phi & \Diamond \\ \Diamond & \Phi & \Diamond \end{bmatrix} $ $ 2 $ $ \begin{bmatrix} \Diamond & \Diamond & \varphi \\ \varphi & \Phi & \Diamond \\ \Phi & \Phi & \Diamond \end{bmatrix} $ $ 32 $	О Ф Ф Ф Ф О 4mA
$ \begin{array}{c cccc} \hline \phi & \Diamond & \Diamond \\ \hline \phi & \phi & \phi \\ \hline \phi & \phi & \phi \end{array} $ $ \begin{array}{c cccc} 4 & \hline \phi & \phi & \phi \\ \hline \phi & \phi & \phi \end{array} $ $ \begin{array}{c ccccc} 32 \\ \hline \phi & \phi & \phi \end{array} $	0 0 0 0 20mA

Changed jumpers will only initialized after power off/on!